

IMPARTIAL GAMES

An impartial two-player game is a game where the allowable moves only depend on the board state or position and not on which of the two players is currently moving

A two-player impartial game is in an **N-position** if that position secures a win for the **Next** player. Conversely, a **P-position** is a state which secures a win for the **Previous** player. A game is an **N-game** or **P-game** if the initial position is an N-position or P-position respectively.

(Sprague-Grundy). All impartial Theorem games can be analyzed by assigning a nonnegative integer value, often called the **Grundy** value, to each game position recursively. The Grundy value of a game is 0 if and only if the game is a P-game, i.e., the second player has a winning strategy regardless of the moves of the first player.

Toggle games are impartial two-player games played on simple graphs with vertex weights from the set $\{-1, 0, 1\}$. Each vertex v has an initial weight $\omega(v) = 1$. Toggling a vertex negates its weight and the weights of its neighbors.

 $\mathcal{G}(1^n)$ is the Grundy value for a Toggle game on a path graph P_n where every vertex v has a weight $\omega(v) = 1.$

Example Verticies and their Weights

HEAT TOGGLE

Every move must strictly decrease the sum of $\omega(v)$ over all $v \in V(G)$.

HEAT TOGGLE DEMO

Exploring Toggle Games on Graphs DJENABA DIOP NATHAN HURTIG

JEAN-PIERRE APPEL

Moravian University

Hobart and William Smith Colleges

$$\mathcal{G}(1^n) = \mathcal{G}(-1, 1^{n-1}, -1)$$

Rose-Hulman Institute of Technology

n	$\mathcal{G}(-1,1^n,-1)$		
1	0	89	5
4	2	103	5
6	1	105	6
9	3	108	4
14	2	124	7
22	2	129	6
27	3	141	3
30	4	171	10
35	5	258	4
41	3	84	16
58	7	407	18
59	3	458	16
72	4	11770548	32
84	4	25146268	32
87	6	27690032	32

Example Heat Toggle game to solve boolean formula $(x_1 \land x_2 \land x_3) \lor (x_2 \land x_4)$

For Heat Charge Toggle on paths with, the number of games with a given Grundy value grow as follows:

REU.

GRUNDY VALUE DISTRIBUTION

FUTURE WORK

• Prove or disprove the periodicity of the path sinisterity exceptions

• Create and Combine Heat Toggle Logic Gates

ACKNOWLEDGEMENTS

A special thanks to our research mentors Dr. Patrick Cesarz, Dr. Eugene Fiorini, and Dr. Andrew Woldar. This research was funded by NSF Grant MPS-2150299 at the Moravian University