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Abstract

Determining the Total Domination Number of a graph is aNP-Hard problem,

with the time to generate a solution scaling impractically unless P = NP. This

thesis seeks to improve the real-world runtimes of existing Total Domination

algorithms by introducing a preprocessing step. We develop a novel similarity

measure between vertices, which enables our algorithm to condense graphs

while retaining relevant characteristics. Our approach is based on the concept

of quotient graphs, but is less restrictive. In the worst case, our algorithm’s

runtime scales quadratically with graph order, offering a preprocessing step

that may enhance existing algorithms.
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Chapter 1

Introduction

1.1 Motivation

Electrical networks, plumbing systems, social groups, and other complex sys-

tems can be modeled using a graph, which is also known as a network. Graphs

model these real world phenomena by representing an entity in the system as a

node or vertex. Each vertex in a graph can have connections to other vertices

are called edges. The collection of nodes and edges that comprise the graph

describe how entities in the original system (power stations, drains, people)

relate to one another.

When attempting to model an electrical grid as a graph, one might wonder

how to monitor the state of each node. Assume that monitors are placed

on nodes, and that each monitor can observe only the states of neighboring

nodes, not its own. Given these conditions, we may want to know how many

monitors do we need to place so that every vertex is being watched by a
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Figure 1.1: An example graph

monitor. Trivially, a monitor could be placed at every vertex in the electrical

grid. However, in reality, there are real expenses incurred for each additional

monitor we use. So, we want to minimize the number of monitors placed while

still ensuring that every vertex is monitored.

Let us start by looking at the simple configuration seen in Figure 1.1.

Each vertex represents a power station, while the lines between them represent

power connections. Using this model, we can describe placements of monitors

which can observe every vertex of the network. Figure 1.2 shows a collection

of monitor placements, which is visualized in blue. However, there exists a

solution which uses fewer monitors, as shown in Figure 1.3. To generalize the

problem, instead of thinking in terms of monitor placements, we can view the

problem as selecting a subset of nodes. The problem of choosing a set of nodes

from a graph so that every vertex is adjacent to something in the set is known

as Total Domination.

What if we consider a larger, more complicated graph as in Figure 1.4? If

we were to check every subset of the 22 nodes in Figure 1.4, we would have to

check up to 222 = 4, 194, 304 different combinations. In general, for a graph

on n vertices, we would have to check at most 2n different sets. While it
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Figure 1.2: A suboptimal solution to Figure 1.1
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Figure 1.3: An optimal solution to Figure 1.1

would not be too difficult to check an individual configuration, approaching

Total Domination Number this way will not work for larger graphs. Figure

1.5 shows one possible set of vertices with a total dominating set. Through

methods discussed later, we can remove redundant information to produce the

graph in Figure 1.6, which has a similar total dominating set shown in Figure

1.7.

Given some set of vertices in a graph, it is easy to verify if the set forms

a total dominating set. On the other hand, it is difficult to generate sets of

vertices that we know are optimal total dominating sets. Informally, this sug-

gests that the problem is NP-Complete, which is a class of problems whose

solutions can be checked quickly, but it is unknown if optimal solutions can be

generated quickly. For smaller graphs, a Total Dominating set can be gener-
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Figure 1.5: Figure 1.4 with a Minimum Total Dominating Set
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Figure 1.7: Figure 1.6 with a Minimum Total Dominating Set
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ated using brute force, but the time to use this method grows exponentially as

the graph grows. Ideally a faster algorithm would be written, one that scales

better with the size of the graph. Regardless of a better program, we can find

places in a graph where placing multiple monitors is redundant. Consider two

separate power plants which are both connected directly to the same housing

developments. Since the power plants are connected to the same nodes, it

makes no difference which power plant we place an external monitor on. By

finding situations like these in graphs, we can avoid checking as many possible

cases. Reducing the number of cases does not change the exponential scaling

of the problem but would reduce real world runtimes.

In this thesis, we explore the NP-Complete problem of finding the Total

Domination Number of a graph. We begin in Chapter 2 examining structural

properties that affect the choice of a total dominating set and Total Domina-

tion Number. Next in Chapter 3 we define a measure of similarity between

vertices based off of their neighborhoods. Using this similarity measure, we

develop a condensation algorithm in Chapter 4 which reduces the graph while

retaining relevant characteristics. Finally, in Chapter 5 we analyze the effec-

tiveness of our algorithm on various graph classes.

8



Chapter 2

Background

Throughout this paper, we assume a basic knowledge of graphs, sets, and big

O notation. For those unfamiliar with either topic, it is suggested to read [3],

[5], and [11], before proceeding. Appendix A contains all relevant notation.

2.1 Total Domination

Domination problems are a popular class of problems in graph theory, with real

world applications in auditing and the monitoring of electrical networks. Two

common questions involving domination are: given a fixed subset of vertices, is

every vertex of the graph adjacent to or in the subset, and what is the smallest

subset of vertices such that every vertex is adjacent to or in the subset. There

are many variants of domination including Roman Domination [10] and Mixed

Domination [9].

The variant of domination we study in this paper is Total Domination.

The definition requires additional notation. Note that V (G) represents the set

9



(a) Minimal Total Dominating Set (b) Minimum Total Dominating Set

Figure 2.1: Minimal and Minimum Total Dominating Sets pictured in blue

of vertices of a graph, and N(S) is the set of vertices which are neighbors to

the vertices in S. A more precise definition of N(S) is available in Appendix

A.

Definition 2.1.1 (Total Dominating Set). For a graph G, a set of vertices

S ⊆ V (G) is a Total Dominating Set of G if N(S) = V (G).

An important consequence of the definition of a Total Dominating Set is

that every vertex in the set must also have a neighbor in the set. We represent

this notationally by using the open neighborhood of a vertex N(v), which does

not include the vertex itself.

Definition 2.1.2 (Minimal Total Dominating Set). A Total Dominating Set

S of a graph G is a Minimal Total Dominating Set of G if no proper subset of

S is a total dominating set of G.

Definition 2.1.3 (Minimum Total Domintating Set). A Total Dominating

Set S of a graph G is a Minimum Total Dominating Set of G if S has the

same cardinality as the smallest of the minimal total dominating sets.

There are cases when a minimal total dominating set is not a minimum

total dominating set. In Figure 2.1a, removing any vertex from the minimal

10



Figure 2.2: A Star graph S5

total dominating set results in a not dominated vertex. Since Figure 2.1b has

a smaller total dominating set than Figure 2.1a, we know the later is minimal

but not a minimum.

Definition 2.1.4 (Total Domination Number). The Total Domination Num-

ber of a graph G, denoted γt(G), is the size of a Minimum Total Dominating

Set.

2.1.1 Star, Complete, and Wheel Graphs

The Star, Complete, and Wheel graph classes are reasonable starting examples

for Total Domination because of how small the diameter in each class is. First,

let us define each graph class as follows:

Definition 2.1.5 (Star Graph). A Star Graph Sn is a connected graph on

n+1 vertices where there is a vertex u ∈ V (Sn) such that deg(u) = n, and for

all other vertices v ∈ V (Sn) \ {u}, deg(v) = 1.

Definition 2.1.6 (Complete Graph). A Complete Graph Kn is a connected

graph on n vertices where every vertex is connected to every other vertex.

11



Figure 2.3: A complete graph K5

Figure 2.4: A Wheel graph W5

Definition 2.1.7 (Wheel Graph). AWheel Graph Wn is a connected graph on

n+1 for n ≥ 3 consisting of a central vertex u ∈ V (WN) such that deg(u) = n.

The remaining vertices v0, v1, . . . , vn−1 ∈ V (Wn) \ {u} form a Cycle, and each

vertex vi is adjacent to u, vi−1, vi+1, where indices are take modulo n.

Under the classical definition of domination, any vertex that is adjacent to

all other vertices forms a minimum dominating set. Total domination differs

in this regard, requiring at least two vertices to be in the minimum total dom-

inating set. This difference is because domination uses closed neighborhoods

while total domination uses open neighborhoods. Total domination in Star,

Complete, and Wheel graphs are a trivial but useful exercise to familiarize

ourselves with the domination variant. As such, we can determine the Total

Domination Number of Star, Wheel, and Complete graphs.

Lemma 2.1.1. Let G = (V,E) be a connected graph where, for some vertex

u ∈ V , we have N(u) = V \{u}. Then for any vertex v ∈ N(u), the set {u, v}

forms a minimum total dominating set of G.

12



Proof. Given a connected graph G = (V,E) with a vertex u ∈ V such that

N(u) = V \{u}, note the only vertex not dominated by {u} is the vertex u. So,

for any vertex v ∈ N(u), the set N({v, u}) = V . Since the open neighborhood

of any vertex cannot include itself, γt(G) ≥ 2. Thus, there exists no smaller

total dominating set of G. Therefore, {u, v} is a minimum total dominating

set of G.

It follows that any graph which meets the conditions for Lemma 2.1.1 have

a Total Domination Number of two.

Corollary 2.1.2. FOr all integers n ≥ 3, γt(Kn) = γt(Wn) = γt(Sn) = 2.

2.1.2 Path and Cycle Graphs

Paths and Cycles are simple graph classes with more interesting total dominat-

ing sets. What makes Paths and Cycles more interesting than Stars, Wheels,

and Complete graphs is how the Total Domination Number changes depending

on the order of the graphs. We denote a path with n vertices as Pn. As an

example, the Paths in Figure 2.5 all have the same Total Domination Num-

ber, despite the fact they have differing numbers of vertices. Henning and

Yeo noted in [7] that Cycles behave similarly, with a Cycle and Path of the

same order having the same Total Domination Number. Below is the Total

Domination Number of Paths and Cycles proved in [7].

Theorem 2.1.3 ([7]). For n ≥ 3, the Total Domination Number of Path

13



Figure 2.5: Minimum Total Dominating Sets of P8, P6, and P7

graphs Pn and Cycle graphs Cn are

γt(Pn) = γt(Cn) =



n
2

if n ≡ 0 (mod 4)

n+1
2

if n ≡ 1, 3 (mod 4)

n
2
+ 1 if n ≡ 2 (mod 4)

2.1.3 Total Domination in General

In general, finding the Total Domination Number of a graph or graph class

is not trivial. It is so difficult that any general algorithm to find the Total

Domination Number of a graph is bound to have its run time scale expo-

nentially with graph order given P ̸= NP. This is because, in general, the

problem of Total Domination Number belongs to a complexity class known as

NP-Complete [7].

A naive algorithm that checks all possible subsets for the smallest total

dominating set can be written to run in O(2n) time for graphs on n vertices.

Much work has been done for better practical and theoretical performance

by Alipour and Salari, van Rooij and Bodlaender, Álvarez-Miranda and Sinnl

and others in [1, 13, 2]. Each paper uses a different technique, with [1] using

14



a distributed algorithm, [13] using measure and conquer, and [2] applying a

heuristic to generate approximate solutions. We approach Total Domination

Number by creating a preprocessing algorithm which may be combined with

any other total domination number algorithm.

2.2 Similarity

Preprocessing a graph to improve the performance of an algorithm can take

many forms. We explore one technique which constructs a smaller graph with

a similar Total Domination Number to that of the original. To do so, we must

decide a way to remove vertices from the input graph while not drastically

changing the Total Domination Number.

Observe that for any vertex, there are usually multiple vertices which dom-

inate it. Also, multiple vertices can be dominated by the same vertex. By

grouping vertices by how likely they are to dominate the same vertex, we can

reason about which vertices must be included in a total dominating set.

In order to group vertices, we need a grouping criteria. Since Total Domi-

nation is dependent on the open neighborhoods of a set of vertices, our criteria

should share this dependency. For two vertices, we want to quantify how sim-

ilar the vertices that they can dominate are. This has implications for how

likely we are to choose one vertex opposed to the other to be in our dominating

set. One possible criteria comes from neighborhood similarity, defined below.

In Section 3.2, we explore other possible criteria.

Definition 2.2.1 (Neighborhood Similarity). Given a graph G = (V,E), the

15



neighborhood similarity of two vertices u, v ∈ V is given by σ(u, v), where

σ(u, v) = |N(u)△N(v)| = |N(u) \N(v)|+ |N(v) \N(u)|.

It is important to note there is an equivalent definition for the neighbor-

hood similarity that follows from an alternative definition of the symmetric

difference △. We provide the alternative definition below.

Definition 2.2.2. For a graph G with vertices u and v, we can alternatively

define the neighborhood similarity as

σ(u, v) = |(N(u) ∪N(v)) \ (N(u) ∩N(v))|.

In simple terms, the neighborhood similarity is the number of vertices

adjacent to exactly one of u or v. As an example, Figure 2.6 has two vertices

a and b with the same neighborhood. When constructing a total dominating

set, we can think of a and b as the same vertex, since any vertex 1, 2, 3, or 4

which is adjacent to a is also adjacent to b. So, the neighborhood similarity of

a and b is σ(a, b) = 0.

While useful, the neighborhood similarity is not normalized, which makes

analysis of similarities within a graph class more difficult. For example, con-

sider the two graphs pictured in Figure 2.7. Note that σ(a1, b1) = 5 while

σ(c1, d1) = 6. Both vertex pairs a1, b1 and c1, d1 have a similar relation, being

that of a leaf attached to a vertex of a complete subgraph. We normalize the

neighborhood similarity to the interval [0, 1] below.

16



a b

1

2

3

4

Figure 2.6: Graph with multiple vertices that have identical neighborhoods

a1a2

a3 a4

b1b2

b3 b4

c1

c2

c3 c4

c5

d1

d2

d3 d4

d5

Figure 2.7: Graphs with different similarities but identical normalized similar-
ities
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Definition 2.2.3 (Normalized Neighborhood Similarity). For two vertices u

and v, we have

σ̂(u, v) = 1− σ(u, v)

deg(u) + deg(v)
.

The normalized neighborhood similarity ranges from vertices with disjoint

neighborhoods (σ = 0) to vertices with identical neighborhoods (σ = 1).

Let’s re-examine Figure 2.7. Recall that σ(a1, b1) = 5 while σ(c1, d1) = 6.

However, the normalized similarities are the same, σ̂(a1, b1) = σ̂(c1, d1) = 0.

The normalized neighborhood similarity allows us to make statements about

entire graph classes, rather than just specific graphs.

The normalized neighborhood similarity has properties which follow di-

rectly from our definitions.

Remark 2.2.1. Some properties of σ̂ are listed below.

1. σ̂(u, u) = 1

2. σ̂(u, v) = σ̂(v, u) Symmetric

3. σ̂(u, v) ∈ [0, 1] Bounded

4. σ̂(u, v) = 1 iff N(u) = N(v)

We will now prove the last property.

Proof. Let u and v be vertices in a connected graph G = (V,E). Assume

for the vertices u and v that σ̂(u, v) = 1. Note the only case when the nor-

malized neighborhood similarity is one is when the neighborhood similarity is

zero. So, by the definition of neighborhood similarity, this only occurs when

18
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Figure 2.8: A complete bipartite graph K3,4 where σ̂(a, b) = 1 but a /∈ N(b)

N(u)△N(v) = ∅. Hence, all elements of N(u) are in N(v) and vice versa.

Thus, N(u) = N(v) if σ̂(u, v) = 1.

Now assume the neighborhoods of u and v are the same. Since N(u) =

N(v), the symmetric difference between the neighborhoods is empty. So

σ(u, v) = 0, hence σ̂(u, v) = 1. Consequently, two vertices normalized neigh-

borhood similarity is one if and only if their neighborhoods are the same.

Note, vertices may have a large σ̂ but not be adjacent; see Figure 2.8 as an

example. In fact, the only way for σ̂ to be 1 is if the vertices are not adjacent.

2.3 Condensation

Graphs contain redundant information when it comes to Total Domination

Numbers. As an example, the pairs of {a, b, c} × {w, x, y, z} all form Total

Dominating Sets of the graph in Figure 2.8. To find the Total Domination

19



Number of the graph, we only need to choose one element of each set. Con-

sequently, finding the Total Domination Number of the example is the same

as a P2. So, by leveraging similarities between vertex neighborhoods, we can

treat groups of vertices as a single vertex. The larger the group of similar

vertices we can construct, the smaller the graph we can find with the same

Total Domination Number. This is important since our goal is to improve the

performance of Total Domination Number algorithms by reducing graph order

through contraction.

2.3.1 Mathematical Model

There are multiple graph operations which produce graphs with fewer vertices.

One such operation is vertex contraction. Vertex contraction combines two

vertices in a graph into a single, new vertex, whose neighborhood is the union

of the two vertices which wer combined.

Definition 2.3.1 (Vertex Contraction). A vertex contraction results in two

vertices vi and vj “becoming” a single vertex vi,j such that N(vi) ∪ N(vj) =

N(vi,j).

In order to combine multiple vertices using vertex contraction, we must

compose a sequence of contractions. The sequence of contractions must take

into account all early contractions and the intermediate graphs that they pro-

duced. Figure 2.9 shows contractions performed on a graph sequentially.

We want to define condensation to use a relation on the vertices instead of

a specific order. This makes the operation more general; combining all vertices

20
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Figure 2.9: A Graph with vertex contractions c, f and b, d

with a normalized neighborhood similarity of a specific value can work for an

entire graph class. We do so by the use of quotient graphs.

Definition 2.3.2 (Quotient Graph). The quotient graph H of a simple graph

G is the graph obtained by partitioning V (G) by an equivalence relation ∼

then constructing edges in H if there exists an edge between any member in

the two parts:

H = (V (G)/ ∼, {xy | x ∈ V (G)/ ∼, y ∈ V (G)/ ∼, x ∩N(y) ̸= ∅}).

Fundamentally, quotient graphs combine groups of vertices which are equiv-

alent by the given relation into a single vertex. If we select a relation which

partitions vertices into parts where all vertices have identical neighborhoods,

the quotient graph is the condensation of each unique neighborhood into a sin-

gle vertex. So, the overall reduction is dependent on the choice of equivalence

relation. We provide an example relation below.
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Let us define a relation to contract vertices for a graph G = (V,E):

σ1 := {(u, v) ∈ V 2 | σ̂(u, v) = 1}.

Proposition 2.3.1. The relation σ1 is an equivalence relation.

Proof. By the properties in Remark 2.2.1, we know σ1 is reflexive and sym-

metric. Additionally, we know if σ̂(u, v) = σ̂(v, w) = 1, that N(u) = N(v)

and N(v) = N(w), so transitively N(u) = N(w). Thus, σ̂(u, v) = σ̂(v, w) = 1

implies σ̂(u,w) = 1. Therefore, σ1 is an equivalence relation.

In most non-trivial graphs, it is rare for a significant number of vertices to

have identical neighborhoods. As such, it would be rare for a quotient graph

under the relation σ1 to result in a smaller graph.

We will use the following lemmas to show that the Total Domination Num-

ber is invariant for the quotient graph under σ1.

First, we show that a total dominating set has a corresponding set which

totally dominates the quotient graph under σ1.

Lemma 2.3.1. On a graph G and a quotient graph G′ = G/σ1, a set D is a

total dominating set of G if and only if a corresponding set D′ = {[v] | v ∈ D}

is a total dominating set of G′.

Before we prove the statement above, please note equivalence class and

partition are used interchangeably. Also consider that [v] is the equivalence

class of v.

22



Proof. Let G be a graph with a quotient graph G′ = G/σ1. Assume a set of

verticesD is a total dominating set ofG. Note that each vertex ofG′ is a subset

of V (G) such that all elements of the subset have the same neighborhood. In

other words, the vertices of G′ are parts of a partitioning of the vertices of

G by an equivalence relation σ1. By the definition of a quotient graph, two

vertices of G′ are adjacent if they contain elements which are adjacent in

G. So if two vertices u, v from G are adjacent, their equivalence classes [u]

and [v] are adjacent in G′. Hence if D is a total dominating set of G then

D′ = {[v] | v ∈ D} is a total dominating set of G′. Now assume D′ is a total

dominating set of G′. So NG′(D′) = V (G′). Since the vertices of G′ are full

neighborhood clusters of V (G), we can choose one element of each vertex from

D′ to be in a set D. Recall vertices in G′ are adjacent if they contain elements

which are adjacent in G. So if D′ is adjacent to all vertices of G′ then D

must be adjacent to all vertices of G. Thus D is a total dominating set of G.

Therefore a set D is a total dominating set of a graph if and only if there is

an associated total dominating set D′ of the quotient graph.

Proposition 2.3.2. For a graph G with a minimum total dominating set

(MTD) D and some set S ⊆ V (G) such that for all u, v ∈ S we have σ̂(u, v) =

1, then

|D ∩ S| ≤ 1.

Proof. Assume for a graph G with a minimum total dominating set D that

there is some set S ⊆ V (G) where all pairs u, v ∈ S have σ̂(u, v) = 1. For

23



sake of contradiction, assume |D ∩ S| > 1. So, there are at least two elements

u, v of S in D. Note σ̂(u, v) = 1 so N(u) = N(v) by Remark 2.2.1. Consider

that both vertices u and v are in D, so removing either one from D does not

change the neighborhood of D. So N(D \ {u}) = N(D \ {v}) = V (G). This

contradicts D being a minimum total dominating set of G, since D \ {u} and

D \ {v} are both smaller. Therefore, by contradiction, |D ∩ S| ≤ 1.

In other words, at most one member of each equivalence class of V/σ1 can

be in the MTD set of a graph.

Theorem 2.3.2. For a graph G and its quotient graph G′ = G/σ1, both G

and G′ will have the same Total Domination Number and |V (G′)| ≤ |V (G)|.

Proof. Assume a graph G has a minimum total dominating set (MTD set) D

and a quotient graph G′ = G/σ1. From Lemma 2.3.1, we know {[v] | v ∈ D}

is a total dominating set of G′. So any MTD set of G′ is the same cardinality

or less than |D|. If a MTD set of G′ smaller than |D| exists, by Lemma 2.3.1,

there must be a corresponding total dominating set of vertices in G. But if a

smaller total dominating set exists, D is not a MTD set of G. Hence all MTD

sets of G and G′ are the same size, i.e. γt(G) = γt(G
′).

The order of G′ is |V (G)/σ1|, which can never be larger than |V (G)| by

the definition of the quotient set. Therefore, γt(G) = γt(G
′) and |V (G′)| ≤

|V (G)|.

We can apply Theorem 2.3.2 on Star graphs to get similar results to Lemma

2.1.1.
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Proposition 2.3.3. The quotient graph of a Star Sn under the relation σ1 is

the Path graph P2.

Proof. Given a Star graph Sn, note there are n leaves all adjacent to a central

vertex. Let G = Sn/σ1. Since all leaves have the same neighborhood, they

belong to the same equivalence class in V (Sn)/σ1. So, the graph G contains

two vertices, one which corresponds to the leaves of Sn and the other which

corresponds to the central vertex of Sn. Consider that that the leaves of Sn are

adjacent to central vertex, hence the vertices of G are adjacent. Thus G ∼= P2.

Therefore, the quotient graph of Sn is the Path graph P2.

By taking the quotient of Sn under σ1, we reduce the original problem into

the simpler task of finding the total domination number of P2. Few graphs

reduce so much under σ1, so to produce smaller graphs, we must use a different

relation.

We can generalize the relation to relax the conditions of partitioning. Given

a set S ⊆ [0, 1], let σS be defined as follows:

σS := {(u, v) ∈ V 2 | σ(u, v) ∈ S}.

Note, σS is not always an equivalence relation. For example, if 1 is not an

element of S, our relation is not reflexive and is therefore not an equivalence

relation. Below we provide criteria for various properties of σS.

• Reflexive

By Remark 2.2.1, σS is reflexive if 1 ∈ S.
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• Symmetric

It also follows from Remark 2.2.1 that σS is always symmetric.

• Transitive

Transitivity holds if and only if for all vertex triples u, v, w, all of their

shared normalized neighborhood similarities σ̂(u, v), σ̂(v, w), and σ̂(u,w)

are contained within S.

Ordered Quotient

The quotient set and graph are only defined for equivalence relations. For our

use case of vertex contraction, we want to perform a quotient like partitioning

of vertices, without requiring the relation to be an equivalence relation. To

achieve this, we define the ordered quotient and ordered quotient graph.

Definition 2.3.3 (Ordered Quotient). The ordered quotient of a strict totally

ordered set (S,<) by some relation ∼ is a partitioning of S with the following

properties given a, b, c ∈ S where a < b < c: If a ∼ b then there is a part P

of S /< ∼ where a, b ∈ P . If a ∼ b, b ∼ c, but a ̸∼ c then there is a part P of

S /< ∼ where a, b ∈ P but c ̸∈ P .

Definition 2.3.4 (Ordered Quotient Graph). The ordered quotient graph H

of a graph G is the graph obtained by partitioning V (G) by a relation ∼ with

an ordering < then constructing edges in H if there exists an edge between

any member of the two parts in G. So,

H = (V (G) /< ∼, {xy | x ∈ V (G) /< ∼, y ∈ V (G) /< ∼, x ∩N(y) ̸= ∅}
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In chapter 4, we study how different choices of the generalized relation σS

change the overall reduction in graph order.

2.3.2 Computational Model

For the condensation to have applications, it must computationally be less

expensive than finding the Total Domination Number of a graph. In Chapter

3, we explore the practicality of computing neighborhood similarities for use in

condensation. Note for now that all the neighborhood similarities of a graph

can be computed in polynomial time and accessed in constant time.

To compute the quotient graph or ordered quotient graph, we must first

partition the vertices by a relation ∼. From Theorem 2.3.2, the only case when

we know the Total Domination Number of the resulting graph and initial graph

are the same is if ∼= σ1. So ultimately, the quotient and ordered quotient

graphs produce an approximate solution unless otherwise proven.

A naive algorithm is provided in Algorithm 1, which was inspired by the

NetworkX implementation [6].

Performing comparisons against every element in all parts drastically slows

Algorithm 1 down, requiring all vertices be compared with every other vertex.

The use of a disjoint-set data structure improves the asymptotic performance

by only performing comparisons against a single representative of each parti-

tion part.

Algorithm 2 uses the disjoint-set data structure to partition vertices. Un-

derlying disjoint-set is a directed forest that supports three different opera-

tions: MakeSet, Union, and Find. The MakeSet operation initializes a
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Algorithm 1 Compute Quotient Set

Require: Vertex Set V
Require: Edge Set E
Require: Condensation Set S
Require: Neighborhood similarity σ
Set partitions ← ∅
Stack stack
for all v ∈ V do

added ← False
for all p ∈ partitions do

for all u ∈ p do
if σ̂(u, v) ∈ S and not added then

p2 ← p
partitions ← partitions \p
partitions ← partitions ∪p2 ∪ {v}
added ← True

end if
end for

end for
if not added then

partitions ← partitions ∪{v}
end if

end for
return partitions
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tree in the forest to the supplied vertex with itself as a parent. Find returns

the root of the forest the given vertex is contained in. It can be used to have

a “representative” of each partition in order to avoid comparisons against all

elements of the partition. The Union operation joins together the two forests

that the two given vertices lie in. There are multiple different implemen-

tions of Union and Find which have differing time complexities. Tarjan and

Leeuwen in “Worst-case Analysis of Set Union Algorithms” showed the worst-

case time complexity for a well designed implementation of Union and Find

to be Θ(mα(m,n)) for n MakeSet operations and m Find operations where

α is the inverse Ackerman function [12]. The inverse Ackerman function is

notable for its extremely slow growth, sub-logarithmic growth. Relevant to

our algorithm, each Union requires 2 Find operations.
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Algorithm 2 Compute Quotient Set using disjoint-set

Require: Vertex Set V
Require: Edge Set E
Require: Condensation Set S
Require: Normalized Neighborhood Similarities σ̂
Disjoint-set M
for all v ∈ V do

MakeSet(v)
end for
partitioned ← ∅
for all u ∈ V do

if u /∈ partitioned then
partitioned ← partitioned ∪{u}
for all v ∈ V \ partitioned do

if σ̂(u, v) ∈ S then
M.Union(u,v)
partitioned ← {v}

end if
end for

end if
end for

30



Chapter 3

Neighborhood Similarity

3.1 Computation

In this section, we explore computational methods for computing the neigh-

borhood similarities. The normalized neighborhood similarities are used to

compute a quotient set via Algorithm 2 which ultimately will be used to re-

duce a graph. We consider two graph representations, Adjacency Lists and

Adjacency Matrices.

A naive approach to compute all neighborhood similarities of a graph would

be to iterate over all vertex pairs and compute two neighborhood similarities.

However, due to the symmetric nature of neighborhood similarities, only a

single similarity must be found per pair. Additionally, by Remark 2.2.1 we

know the normalized neighborhood for any vertex with itself is reflexively 1.

As such, on a graph of order n, exactly (n−1)n
2

similarities will need to be

computed. In Algorithm 3, we implement a general algorithm that considers
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the symmetric nature of the problem.

The structure used to represent the graph has a significant impact on the

algorithm’s average time complexity. It is important to note that regardless

of the graph’s original data structure, it is possible to store the results such

that access is a constant time operation.

3.1.1 Adjacency Matrix

For an adjacency matrix of a graph, we can define a normalized neighborhood

similarity matrix as follows:

Definition 3.1.1 (Normalized Neighborhood Similarity Matrix). Given a

graph G of order n with an adjacency matrix A, the normalized neighborhood

similarity matrix B is given as follows:

Bij = 1− 1

D(i, j)

n∑
k=1

(Aik ⊕ Ajk),

where a⊕ b := a+ b mod 2 and D(i, j) :=
n∑

k=1

Aik + Ajk.

With some slight modifications, Algorithm 3 can be adapted to produce a

normalized neighborhood similarity matrix. Note that to compare the neigh-

borhood of two vertices in an order n matrix, n iterations must occur. Thus,

computing a single normalzied neighborhood similarity is Θ(n). Since we are

computing (n−1)n
2

similarities, the average time complexity is Θ(n3).

It is important to note that the space required to store the neighborhood

similarities can be halved. As a result of the symmetrical nature of neighbor-
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Algorithm 3 Compute Neighborhood Similarities

Require: Graph G = (V,E)
procedure Similarity(G, u, v)

sum ← 0
du ← 0
dv ← 0
for all v′ ∈ N(v) do

dv ← dv + 1
for all u′ ∈ N(u) do

du ← du + 1
if u′ = v′ then

sum ← sum + 1
end if

end for
end for
return 1− sum · (du + dv)

−1

end procedure

procedure Similarities
for all v ∈ V do

result[v, v]← 1
end for
visited ← ∅
for all v ∈ V do

visited ← visited ∪ {v}
for all u ∈ V \ S do

similarity ← Similarity(G, u, v)
result[u, v]← similarity
result[v, u]← similarity

end for
end for
return result

end procedure
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hood similarities, only the upper or lower triangle needs to be stored in the

result matrix.

With or without the space saving technique, retrieving a similarity from

the matrix is a constant time operation.

3.1.2 Adjacency List

As an alternative to the adjacency matrix, the neighborhood similarities can

be computed from an adjacency list and stored in a hash table. To achieve

constant time similarity retrievals using the hash table, we must use a hash

function with no collisions. If we carefully choose our hash function so that

symmetric vertex pairs collide, we can achieve a similar space reduction to

that of upper triangle normalized neighborhood similarity matrices.

Xie presents a pairing function in [14] that meets our criteria. This function

F is a bijective mapping such that F : N × N → N. The function is defined

as:

F (m,n) =
1

4

(
(m+ n− 1)2 + (m+ n− 1) mod 2

)
+min (m,n). (3.1)

Adjacency lists differ from adjacency matrices with number of iterations to

walk a neighborhood being bounded above by ∆(G) instead of |V (G)|. The

less connected a graph is, the smaller ∆(G) is relative to |V (G)|. So, for graphs

with fewer edges, it is preferable to use an adjacency list. Furthermore, since

we only care about the size of the symmetric difference of the neighborhoods,
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we only need to compare up to the size of the smaller neighborhood. We

provide Algorithm 4, which takes the prior statements into consideration.

The computational complexity of computing the degrees given an adja-

cency list is dependent on the max degree. Let ∆ be the max degree of the

graph. In the best case, the graph is a Star, so all ∆ of thhe leaf vertices have

a time complexity of O(1) while the non-leaf vertex has a time complexity of

Θ(∆). Hence, the best case time complexity is Θ(∆). Now let us consider

the worst case for computing degrees, a complete graph. For all n vertices, we

must iterate over ∆ elements. Thus, the worst case has a time complexity of

O(|V |∆). So the average complexity to get the degrees is Ω(∆), O(|V | ·∆).

The time complexity of computing a single normalized neighborhood sim-

ilarity is also dependent on a maximum degree ∆. In the best case, the two

vertices are leaves so only 1 comparison is made. It follows that the best

case has a time complexity of Θ(1). The worst case is when both vertices

are of the maximum degree ∆. We can sort the vertex neighborhoods on

average in O(∆ log∆) time. Sorting allows the two neighborhoods to be iter-

ated over simultaneously in O(∆) time. So the worst-case time complexity to

compute a nomralized neighborhood similarity is O(∆2 log∆). Therefore the

average complexity of computing a single normalized neighborhood similarity

is O(∆2 log∆).

To compute the normalized neighborhood similarity map, we need to com-

pute degrees of each vertex and the similarities of all vertex pairs. Rather

than trying to sort the neighborhoods of each vertex as they are encountered,

we can sort them all at once in advance. For each vertex, note we can sort
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Algorithm 4 List Normalized Neighborhood Similarity

Require: Adjacency list L
Require: n ≥ 2 vertices
procedure Similarity(L, u, v, d)

i← d[u]− 1
j ← d[v]− 1
sum← 0
while i ≥ 0 and j ≥ 0 do

if L(u)[i] > L(v)[j] then
sum← sum + 1
i← i− 1

else if L(u)[i] > L(v)[j] then
sum← sum + 1
j ← j − 1

else
i← i− 1
j ← j − 1

end if
end while
if i < 0 and j >= 0 then

sum← sum + j + 1
else if j < 0 and i >= 0 then

sum← sum + i+ 1
end if
return 1− sum · (d[u] + d[v])−1

end procedure
procedure SimilarityMap(L, n)

Create Hash Table M with hashing function Eqn. 3.1
Compute degrees and store in array d
for i← 1 . . . n do

Sort neighborhood of i
M [i, i]← 1

end for
for u← 2 . . . n do

for v ← u+ 1 . . . n do
M [i, j]← Similarity(L, u, v, d)

end for
end for
return M

end procedure
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their neighborhoods in O(∆ log∆) time, so we sort all vertex neighborhoods

in O(|V |∆ log∆). Since each vertex neighborhood is sorted, computing a nor-

malized neighborhood similarity of a vertex pair is only O(∆). Since we must

look at each pair, the time complexity to generate the normalized neighbor-

hood similarity map is O(|V |2∆).

3.1.3 Comparison

Between an adjacency list and adjacency matrix, the adjacency list has a time

complexity which is asymptotically better. So, unless otherwise specified, this

thesis assumes graphs are represented using adjacency lists and neighborhood

similarities are stored using a hash table.

As a brief aside, a real implementation of normalzied neighborhood simi-

larity on adjacency matrices may perform close to on par with adjacency lists.

This would be a result of adjacency matrices better utilizing hardware features

such as CPU vectorization and bit packing.

3.2 Other Measures of Similarity

Our definition of neighborhood and normalized neighborhood similarity is not

unique. In fact, we could define the normalized neighborhood similarity of two

vertices u and v to be |N(u)∩N(v)|
|N(u)∪N(v)| . This potential definition holds all properties

of σ̂ from Remark 2.2.1. However, any alternative definition of normalized

neighborhood similarity that considers all neighbors of both vertices performs

no better than Algorithm 4. We prove the prior statement below.
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Proposition 3.2.1. For any neighborhood similarity definition that considers

all adjacent vertices, the worst case time complexity to compute all neighbor-

hood similarities of a graph is Ω(|V |2∆).

Proof. Let s be a function that computes a neighborhood similarity in constant

time and takes into account all vertices adjacent to its operands. Note for a

graph of order |V |, there are exactly 1
2
(|V |2 − |V |) neighborhood similarities.

So in all cases, the time complexity of computing neighborhood similarities is

Ω(|V |2). Consider a case of computing s(u, v) for vertices u and v where both

vertices are of the maximum degree ∆. If the neighborhoods N(u) and N(v)

can be compared in O(1), then they must be in a data structure which allows

so. The fastest an insertion of a distinct element into a data structure can be

is O(1), so performing ∆ insertions must be Ω(∆). So, the time complexity to

compute a neighborhood similarity must be Ω(∆) in the worst case. Therefore,

the worst-case time complexity to compute all neighborhood similarities using

s is Ω(|V |2∆).
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Chapter 4

Quotient Graphs

Computing the Total Domination Number of a graph in general isNP-Complete,

as shown by Henning and Yeo in [7]. If P ̸= NP , the time complexity for a

general algorithm to compute the Total Domination Number of a graph would

grow in a non-polynomial manner. Assuming this to be true, the graph’s order

is highly significant to the real runtime of computing the Total Domination

Number. We present a pre-processing algorithm which is guaranteed to yield

graphs with orders no larger than the original.

The effectiveness of the algorithm will be measured as a ratio of the result-

ing order over the original order. This chapter’s analysis focuses on optimizing

the selection of normalized neighborhood similarities for condensation, aiming

to minimize the ratio. Under ideal circumstances, a graph G will have a quo-

tient graph G′ = G/σ1 where |V (G′)| = γt(G). In these cases, we are able to

achieve a reduction ratio of γt(G)
|V (G)| .
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4.1 General Algorithm

In this section, we will explore a general algorithm to condense a graph. While

the general algorithm works for any graph, there are multiple graph classes

where other methods yield asymptotically faster results. Regardless, Algo-

rithm 5 is guaranteed not to increase the Total Domination Number of a

graph while decreasing the order in polynomial time. Depending on the choice

of normalized neighborhood similarities to condense on, Algorithm 5 produces

a graph with either the exact or approximate Total Domination Number of

the input. As an optimization, we use the disjoint-set data structure from

the output of the quotient set Algorithm 2. This optimization allows us to

only check one normalized neighborhood similarity when considering adding a

vertex to a part.

We now provide the general Algorithm 5 for producing quotient graphs.

A critical part of condensing a graph via Algorithm 5 is creating a quotient

set. In Section 3.1.2, we showed that all normalized neighborhood similarities

can be computed in O(|V |2∆) time. The top level loop iterates over all vertices,

adding a representative of each part of the partition and its edges to the output

graph.

In the worst case, all vertices of the original graph lie in their own part

and all vertices have the maximum degree. If each vertex is isolated in its

own part, the following operations are required for each vertex: a Find op-

eration in the outer loop, a loop over its neighbors, and a Find operation

for each neighbor. Recall that α is the slow growing inverse Ackerman func-

tion, and that it describes the time complexity of the Find operation. The
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Algorithm 5 The General Condensation Algorithm

Require: Graph G
Require: Normed neighborhood similarities σ̂
Require: Condensation Set S
M ←QuotientSet(G,S, σ̂) ▷ Disjoint-set
V ′ ← ∅
E ′ ← ∅
for all v ∈ V (G) do

if M.Find(v) = v then ▷ iterate over part roots
V ′ ← V ′ ∪ {v}
for all u ∈ N(v) do

r ← M.Find(u)
E ′ ← E ′ ∪ {vr}

end for
end if

end for
return (V ′, E ′)

first find operation occurs on each outer loop, so the amortized time com-

plexity of it is O(|V |α(|V |, |V |)). The second find operation occurs once per

each ∆ inner loop. So the amortized time complexity of the inner loop is

O(∆α(|V |, |V |)). Thus, in the worst case the outer loop has a time complexity

of O(|V |α(|V |, |V |) · (1 + ∆)). Note that the time complexity of the outer

loop is less than that of computing the normalized neighborhood similarities.

Therefore, the worst-case time complexity of Algorithm 5 is O(|V |2∆).

4.2 Wheels

Some graphs appear as if they should reduce but do not. As an example,

a Wheel on 6 or more vertices does not reduce under the relation σ1. From

Lemma 2.1.1, we know γt(Wn) = 2, so under ideal circumstances we should
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u v σ̂(u, v)
peripheral center 1− n−2

n+3

peripheral adjacent 1− 4
6

peripheral non-adjacent 1− 2
6

Table 4.1: Neighborhood similarities of Wn for n > 5

be able to find a set S ⊆ [0, 1] where Wn/σS = P2.

Table 4.1 illustrates the three classes of neighborhood similarities for Wn

with n ≥ 6. Because of this, we can use the Algorithm 6 which is a modi-

fication of Algorithm 5 to condense the graph. The specialized Algorithm 6

produces the same output as the general Algorithm 5 if the later were to use

a condensation set of {1
3
, 2
3
}.

Algorithm 6 Wheel Condense

Require: Wheel Graph Wn

Require: Neighborhood similarities σ̂
Require: n ≥ 6
center ← ∅
periphery ← ∅
for i← 1 . . . n do

for j ← i+ 1 . . . n do
if σ̂(i, j) = 1

3
or σ̂(i, j) = 2

3
then

periphery ← periphery ∪ {i}
else

center ← i
end if

end for
end for
V ← {center, periphery}
E ← {{center, periphery}}
return (V,E)

Note that in all cases, Algorithm 6 must iterate exactly n(n+1)
2

times and

perform a constant amount of work. Thus, the time complexity to condense a
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Wheel graph is Θ(n2).

4.2.1 Reduction Ratio

Both the general condensation Algorithm 5 and the specialized Wheel conden-

sation Algorithm 6 result in an optimal condensation. For a Wheel of order

n, given the relation σS where S = {1
3
, 2
3
}, the quotient graph is of order 2

achieving a reduction ratio of 2
n
.

4.3 Partite Graphs

Partite graphs are a large family of graphs with applications in graph coloring.

Definition 4.3.1 (independent set). A set of vertices which has no edges to

other members of the set is an independent set.

Definition 4.3.2 (k-partite graph). A graph comprised of k independent sets

is a k-partite graph.

Definition 4.3.3 (Complete k-partite graph). A k-partite graph is a complete

k-partite graph if every vertex has an edge to all other vertices not in its

independent set.

We notate complete k-partite graphs as Kx1,x2,...,xn , where xi is the cardi-

nality of the i-th independent set.

When k = 2, a k-partite graph is called a bipartite graph. It is important

to note that in general, identifying a k-partite graph is NP-Complete for
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k > 2, as shown in [4] by Garey and Johnson. We still care to study these

graphs for additional insights into the application of our Algorithm 5.

4.3.1 Complete Bipartite and k-Partite

Let us start with a complete bipartite graph.

Consider the graph Ka,b with independent sets A and B. Note each vertex

in A is adjacent to all vertices of B, so the vertices of A have a degree of b

with a neighborhood B. Similarly, the vertices of B have a degree of a and

a neighborhood of A. So when condensing a complete bipartite graph, the

normalized neighborhood similarities are either zero or one.

We will now show how this generalizes to complete k-partite graphs.

Proposition 4.3.1. The quotient graph of a complete k-partite graph under

σ1 has exactly k vertices.

Proof. Let G be a complete k-partite graph. By the definition of a complete

k-partite graph, all members of an independent set of vertices Xi for i ≤ k are

adjacent to every vertex not in Xi. Without loss of generality, all members

of Xi have the same neighborhood, so they all have a normalized neighbor-

hood similarity of 1. Thus each independent set of the original graph forms

an equivalence class under σ1. Therefore there are exactly k vertices in the

quotient graph of a complete k-partite graph under the relation σ1.

Observe that the normalized neighborhood similarity for any adjacent ver-
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Figure 4.1: K3,3,3,

tices u, v in the i-th and j-th sets of size xi, xj respectively will be

1− xi + xj

2
(∑k

l=1

)
xl − xi − xj

.

As an example, let us consider theK3,3,3 in Figure 4.1. From our definitions,

we know the normalized neighborhood similarity within any independent set

is 1. The normalized neighborhood similarity σ̂(1, 4) is 1
2
.

4.3.2 Reduction Ratio

Since the vertices of the quotient graph of a complete k-partite graph are

its independent sets, we achieve a reduction ratio of k
n
when using σ1 as our

relation.
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4.4 Trees

Trees are another large family of graphs with interesting properties and many

applications.

There are two equivalent definitions of a Tree graph. We leave it as an

exercise to the reader to prove their equivalence.

Definition 4.4.1 (Tree). A Tree is a simply connected acyclic graph.

An equivalent definition of a tree is the following.

Definition 4.4.2 (Tree). A simple graph is a Tree For any two vertices in a

simply connected graph, there exists exactly one Path between them.

Both definitions are relevant.

Some examples of Trees are Path graphs, Star graphs, and Caterpillar

graphs, as seen in Figure 4.2.

We now show that for any Tree, only the leaf vertices can be reduced by

condensation.

Theorem 4.4.1. The only vertices which can be condensed in a Tree graph

are leaf vertices.

Proof. Given a Tree T = (V,E), let P be the set of leaf vertices; i.e. P =

{v ∈ V | deg(v) = 1}. For the sake of contradiction, assume there exists

u, v ∈ V \P such that σ̂(u, v) = 1. So N(u) = N(v) and deg(u) ̸= 1 ̸= deg(v).

It follows that for all w ∈ N(u), there is a uwv path. Hence, without loss of

generality, there are at least deg(u) paths from u to v in T . Recall T is a Tree,

so there is exactly one path from u to v. But then deg(u) = deg(v) = 1 which
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Figure 4.2: Examples of Tree Graphs

contradicts u and v not being leaf vertices. Therefore, only leaf vertices in a

Tree are condensable.

As a result of Theorem 4.4.1, we can expect the reduction ratio obtained

from computing a quotient graph to be dependent on the number of leaves. In

Figure 4.3, we show an example of a Tree whose quotient graph has an order

only 3 smaller than the original. The class of Trees that condense the most

are Star graphs, since all vertices except for one are leaves. Conversely, Path

graphs condense the least, because there are only two leaves which condense

for P3 and no other case.

Henning and Yeo in [7] provide a linear time algorithm to compute the

Total Domination Number of a Tree. Since our general Algorithm 5 runs in

quadratic time on average, preprocessing a tree does not yield any benefits

when computing its Total Domination Number.
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(a) T (b) T/σ1

Figure 4.3: A graph T and its quotient graph T/σ1
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Chapter 5

Analysis

5.1 Competitive Analysis

Currently it is unknown if NP-Hard problems like Total Domination Number

can be solved in polynomial time. In the likely case that P ̸= NP , the time

for an algorithm to generate an optimal solution scales exponentially with the

graph size. As such, it is not practical on larger graphs to search for the optimal

solutions. So, in order to achieve tangible results, general Total Domination

Number algorithms should approximate the actual total domination number

in polynomial time. An approximation is meaningless without bounds; one

could always approximate the Total Domination of a graph to be its order in

linear time. When evaluating the quality of an approximation algorithm, we

care about the difference between the optimal solution and the approximate

solution.

The quality of an approximation algorithm is typically measured using
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Figure 5.1: An optimal greedy coloring of a crown graph [8]

competitive analysis. To understand this, consider the classic problem of graph

coloring. Greedy Coloring is a type of graph coloring in which vertices are

assigned a “color” that none of its neighbors have. The coloring is considered

greedy if a vertex is assigned the first color available. Figure 5.1 shows an

optimal greedy coloring on a graph. If the algorithm which produced Figure

5.1 uses a different vertex ordering, the result is Figure 5.2. Ideally we use

two colors, but in the worst case we use eight for a ratio of 8
2
= 4. The ratio

can be generalized for larger crown graphs to be n
2
for crowns with n vertices

[8]. It is important to note that the ratio of n
2
only holds for graphs of crown

graphs.

Competitive analysis provides insight into worst-case performance across

all instances in terms of lower and upper bounds. Proving a lower bound is

generally straightforward: if we can identify a single instance with a certain

approximation ratio, it establishes a minimum ratio for the algorithm’s per-

formance. On the other hand, proving an upper bound is significantly more

difficult because it requires that certain ratio holds for all cases. Proving an

upper bound is challenging for all but the simplest of problems.
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Figure 5.2: An suboptimal greedy coloring of a crown graph [8]

For our Algorithm 5, we care about the Total Domination Number of the

output compared to the input. To be specific, our algorithm receives a graph

G and a set of normalized neighborhood similarities S ⊆ [0, 1] and outputs

a smaller graph G′. Performing competitive analysis on our algorithm means

finding a set S which for a specific ordering causes
γt(G

′)

γt(G)
to be as large as

possible. The worst case for any graph G is the set of normalized neighborhod

similarities S which which minimizes
γt(G

′)

γt(G)
, while the best case is the set

which maximizes the ratio. Similar to the greedy coloring example, we perform

analysis on only one family of graphs at a time.

First, let us note that it is fruitless to choose any set S which does not

contain a normalized neighborhood similarity from G. This follows from the

definition of condensation, which requires the normalized neighborhood simi-

larity of two vertices to be in S for condensation to occur.

Another degenerate case we should exclude from our analysis is if the con-

densation set S contains all normalized neighborhood similarities found in our

graph. It follows from the definitions that the quotient graph produced in this

case would be the Trivial graph, for which Total Domination is undefined.
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Figure 5.3: W8 where σ̂(2, 4) = 1
3

In all of the following graph classes, we will ignore the cases described

above.

5.1.1 Wheels

The following holds for all wheels on 6 or more vertices except for wheels on

13 vertices.

Recall from Table 4.1 that the possible normalized neighborhood similari-

ties of a Wheel are 1
3
, 2

3
, and 1− n−2

n+3
. A similarity of 1

3
is attained for any two

non-central vertices which share a non-central vertex as a neighbor, as seen

in Figure 5.3. All non-central vertex pairs which do not share a non-central

vertex as a neighbor have a similarity of 2
3
, similar to Figure 5.5. Lastly, for

a Wheel on n + 1 vertices the similarity between the central vertex and any

other is 1− n−1
n+3

, as shown in Figure 5.4.

Note a Wheel graph Wn is undefined for n < 3, and in the special case

of n = 12, a wheel only has two normalized neighborhood similarities since

1− n−2
n+3

= 2
3
.
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Figure 5.5: W8 where σ̂(3, 4) = 2
3
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Proposition 5.1.1. The worst case for Wheel condensation is using the value

n−1
n+3

for a wheel on n+ 1 vertices.

Proof. Given aWheel graphG on n+1 vertices where n ∈ {5, 6 . . . , 11, 13, . . . },

let s = 1− n−1
n+3

. We know all vertex pairs containing the central vertex have a

normalized neighborhood similarity of 1− n−1
n+3

. So, regardless of order, G /< σs

produces the Trivial graph, which has an undefined Total Domination Number.

Therefore the worst set to condense on is {1− n−1
n+3
}.

Proposition 5.1.2. The best case for Wheel condensation is using the set

{1
3
, 2
3
}

Proof. Given aWheel graphG on n+1 vertices where n ∈ {5, 6, . . . , 11, 13, . . . },

let S = {1
3
, 2
3
}. We know that any vertex pairs where neither vertex is the cen-

tral vertex have a normalized neighborhood similarity within S. So, regardless

of order, the result of the condensation G /< σS is a graph with two connected

nodes, one containing the central vertex from G and the other containing ev-

ery other vertex. Hence G/σS
∼= P2. Note γt(G) = γt(P2) so no other choice

of S could perform any better. Also note |V (P2)| = 2, so the only potential

smaller graphs are the trivial or empty graphs. Total Domination is undefined

for both of these graphs. Thus there is no other choice of S which yields a

closer Total Domination Number and smaller graph. Therefore the best set to

condense Wheels with is {1
3
, 2
3
}.
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5.1.2 Cycles

The Total Domination Number of Paths and Cycles are found in Theorem

2.1.3. The following holds for all Cycles on 5 or more vertices.

A pair of vertices in a Cycle has two possible normalized neighborhood

similarities. Their similarity will be 0.5 if they are a distance of two from each

other and 0 if they are not.

Proposition 5.1.3. The worst case for Cycle condensation is achieved by

using the set {0}.

Proof. Given a Cycle Cn where n ≥ 5, let S = {0}. Assume there is a vertex v

which is the first vertex that normalized neighborhood similarity comparisons

will be made with. Regardless of the vertex iteration order, G /< σS produces

a graph where one vertex represents the vertices a distance of two away from v

and the other represents everything else. So Cn/σS
∼= P2. Hence by Theorem

2.1.3, |γt(Cn) − γt(Cn /< σS)| ∈ {n2 − 2, n+1
2
− 2, n+1

2
− 1}. Note that Total

Domination is undefined for any smaller graphs. Thus there is no other choice

of S which will yield a Total Domination Number farther from that of Cn.

Therefore the worst set to condense a Cycle on is {0}.

Since Cycles only have two possible normalized neighborhood similarities,

we know 0.5 must be the best value to condense on. However, we will still

explore what it means to condense using the value 0.5 for completeness.

Proposition 5.1.4. The best case for Cycle condensation is achieved by using

the set {0.5} and iterating over the vertices such that the next vertex is adjacent

to the current.
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Proof. Given a Cycle Cn where n ≥ 5, let S = {0.5}. Assume the vertices are

labeled using {1, 2, . . . , n} where adjacent vertices have a difference of 1 except

for the vertices labeled n and 1. Note the only time a pair of vertices has a

normalized neighborhood similarity of 0.5 is when they are a distance of two

apart. So Cn /< σS produces a smaller Cycle graph. Consider that the nodes

of Cn /< σS which contain 1 and 2 are {1, n − 1, 3} and {2, n, 4} respectively.

Because of the order of iteration, all vertices v greater than 4 are in a vertex

with {v, v+2}. In the cases where n− 6 ̸≡ 0 (mod 4), some vertices will map

to a vertex containing a single vertex in Cn /< σS. If n− 6 ≡ 1 (mod 4) then

|V (Cn /< σS)| = 3+ n−7
2
. Similarity if n−6 ≡ 2, 3 (mod 4) then |V (Cn /< σS)|

is equal to 4 + n−8
2

and 3 + n−7
2
. Hence we have the following isomorphisms

for Cn /< σS:

Cn /< σS
∼=


C4+n−8

2
n ≡ 0 (mod 4)

C3+n−7
2

n ≡ 1, 3 (mod 4)

C2+n−6
2

n ≡ 2 (mod 4)

.

Thus by Theorem 2.1.3 the condensed graph’s Total Domination Number dif-

fers from the original by

|γt(Cn)− γt(Cn /< σS)| =



n
2
− n−8

4
− 2 n ≡ 0 (mod 4)

n+1
2
− n−7

4
− 2 n ≡ 1, 3 (mod 4)

n
2
− n−6

4
− 1 n ≡ 2 (mod 4)

.

Therefore the best set to condense a Cycle on is {0.5}.
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5.1.3 Paths

The analysis for Paths is similar to that of Cycles, since both have a Total

Domination Number described by Theorem 2.1.3.

Proposition 5.1.5. The worst case for Path condensation is achieved by using

the set {0}.

Proof. Given a Path Pn where n ≥ 5, let S = {0}. Assume under some vertex

ordering <, the first vertex is v. In the case that v is a leaf of Pn, every

vertex except a vertex u shares no neighbors with v, and consequently has

a normalized neighborhood similarity of zero. The vertex u is the vertex a

distance of two away from v and has exactly one neighbor in common with v.

So, the quotient graph obtained from the relation σS is the graph ({V (Pn) \

{u}, u}, {(V (Pn)\u, u)})) which is a P2. Similarly in the case that v is not a leaf

of Pn, there are only two vertices u,w which share neighbors with v. Note that

the vertices u,w area distance of two from v each, so their neighborhoods have

no vertices in common. Thus in this case, the result of the quotient graph of P2

is ({V (Pn)\{u,w}, {u,w}}, {(V (Pn)\{u,w}, {u,w})}). Hence for any ordering

of vertices <, Pn /< σS
∼= P2. Note that the Total Domination Number is

undefined for any smaller graphs. Therefore the worst set to condense a Path

on is {0}.

Proposition 5.1.6. The best case for Path condensation is achieved by using

the set {2
3
}.

Proof. Given a Path Pn where n ≥ 5, let S = {2
3
}. Let the leaf vertices be

labeled v1, vn. Note any vertex pair whose degree sum is three or a multiple of
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three must include a leaf vertex. The only vertices which can share neighbors

with a leaf vertex are a distance of two away from them. So let v3 and vn−2

be the vertices which share a neighbor with v1 and vn, respectively. Hence

|V (Pn/σS)| = n− 2. Consider that the vertices which v1, v3 and vn−2, vn share

in common are only adjacent to the vertices of their respective pair. So those

vertices become leaves in Pn/σS, while v1, v3 and vn−2, vn become adjacent to

two vertices. Thus, the quotient graph of Pn by the relation σS is isomorphic

to Pn−2. Note γt(Pn) − γt(Pn−2) ∈ {0, 1} by Theorem 2.1.3. Therefore the

best set to condense on a Path is {2
3
}.
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Chapter 6

Conclusion and Future Work

Conclusion

In this work, we investigated the complexity of Total Domination in graphs

and developed an algorithm to make the problem more tractable through pre-

processing.

We began by observing that, in a minimum total dominating set, at most

one vertex from any set of vertices with the same neighborhood is chosen to

be in the set. From that, we created a measure of neighborhood similarity σ̂.

Using our measure of neighborhood similarity, we defined the ordered quotient

and ordered quotient graph. The ordered quotient was used to group vertices

by their neighborhood similarities and construct an ordered quotient graph

with similar features to the original. In particular, ordered quotient graphs

preserve exactly or approximately the Total Domination Number, while using

a number of vertices that is no greater than the original.
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Ordered quotient graphs and quotient graphs are tools to use when finding

a total dominating set for a less researched graph. As we showed with complete

k-partite graphs, large graph classes can be reduced down to a simpler, already

solved forms via quotient graphs.

Our algorithm to compute ordered quotient graphs was shown to have a

worst-case time complexity of O(|V |2∆). We analyzed effectiveness of our

algorithm using competitive analysis on specific graph classes such as Wheels,

Paths, and Cycles. When applied before a Total Domination algorithm, our

preprocessing algorithm has the potential to substantially improve practical

performance.

Future Work

We are interested in exploring the broader applications of our condensation

algorithm. Future research could investigate applying the algorithm to sub-

graphs rather than entire graphs; this approach may yield a graph of lower

order while simplifying the selection of neighborhood similarities for condensa-

tion. Additionally, extending our condensation algorithm to other domination

variants could reveal further benefits, with identifying appropriate similarity

measures for each variant being a promising direction.

Experimentally, we still have significant work to do. Running trials with

real-world data will help us evaluate our algorithm’s performance. We also

plan to test our algorithm as a preprocessing step for various existing Total

Domination algorithms. By comparing speed improvements, we aim to identify
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which algorithms benefit the most from our preprocessing.
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Appendix A

Notation

G = (V,E) := graph

V (G) := vertex set of graph

E(G) := edge set of graph

deg(v) := degree of a vertex v

δ(G) := minimum degree of G

∆(G) := maximum degree of G

G/ ∼ := quotient graph of G under the relation ∼

N(v) := open neighborhood of a vertex v

NG(v) := open neighborhood of a vertex v in the graph G

N(S) =
⋃

v∈S N(v) := open neighborhood of all vertices in the set S

γt(G) := Total Domination Number of G

N := {1, 2, . . . }

G ∼= H := graph isomorphism

Kn := a graph of n not connected vertices
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