
For websites with user-generated content, uploading images and 
other media may not always be supported, requiring the use of 
hyperlinks instead. As the final project for our Web Programming 
course, we created File Fortress, a file hosting service. Users are able 
to manage files via web interface, command line application, or a 
REST API. Our project consists of a Python backend, Flask web 
server, MariaDB database, with a nginx reverse proxy and file server. 
The tech stack can easily be launched via a single command by the 
use of Docker Compose. Overall, File Fortress simplifies the 
installation, uploading, and sharing process of file hosting.

File Fortress
Jean-Pierre Appel Owen Halliday David Marrero

Advisor: Dr. Benjamin Coleman

The time constraints of the semester left us with some 
untackled features

● Implementation of user authentication through OAuth 
2.0

● Support for file storage via S3-compatible object-based 
storage

● Endpoints for creating, updating, and deleting user file 
collections

● Used Docker for containerization
● Used Docker Compose to manage multiple containers
● Separated into individual containers

○ Database
○ Backend
○ Web server

● Docker allowed more
○ Stability
○ Reproducibility

C
R
D

POST /api/v1/file/<identifier>
POST /api/v1/file

DELETE /api/v1/file/<identifier>

GET /api/v1/file/<identifier>
OPTIONS /api/v1/file/<identifier>

Users can upload and view files on the web interface.

The bundled command line application supports file deletion.

Web

Command Line Application

Users can also upload files directly from the command line.

Abstract

Interfaces and Features

REST API

Deployment and Containerization

Future Work

System Architecture

● File Fortress is run as a collection of Docker containers
● nginx is the reverse proxy and exposed container
● Gunicorn WSGI server connects to Flask
● Flask web server interacts with database and storage volume
● MariaDB database stores relations between files and URLs
● Docker volumes persist user files and the database between 

sessions

● API endpoints are versioned to allow live modification
● (C)reate (R)ead (U)pdate (D)elete is an interface that describes 

file storage operations
● Users can create a file at a specified path or have one 

generated for them
● Files are publicly accessible at a path after upload
● The availability of a path can be checked via an options request
● Privileged users are able to delete uploaded files

Public Demo

Login Details
User: kutztown

Password: pacise2024

Demo Site Picture of this Poster

User 1 User 2

File 1 File 2 File 1 File 2

$ file-fortress upload –shortlink demo demo.txt
File demo.txt uploaded successfully!
Link: http://filefortress.xyz/demo

$ file-fortress remove filefortress-logo
File removed!

/var/lib/mysql


